

N-body codes:

- Cube with periodic boundary conditions; comoving coordinates
- Sample continuous distribution with N particles
- Leapfrog:

$$\mathbf{x}_{i}^{n+\frac{1}{2}} = \mathbf{x}_{i}^{n-\frac{1}{2}} + \Delta t \mathbf{v}_{i}^{n} + O(\Delta t^{3})$$

$$\mathbf{v}_{i}^{n+1} = \mathbf{v}_{i}^{n} + \Delta t \mathbf{a}_{i}^{n+\frac{1}{2}} + O(\Delta t^{3})$$

$$\mathbf{a} = \nabla \Phi(\mathbf{x} = \mathbf{x}_{i}), \quad \nabla^{2} \Phi = 4\pi G \rho$$

Difficulties:

- Gravity is long range
- Highly inhomogeneous particle distribution
- \bullet Want large box (~ 100 Mpc) but high resolution (~ 1 kpc)

TPM algorithm:

Split long-range and short-range forces

- Compute Φ on Eulerian grid
 Particle-Mesh (PM) method:
 solve Poisson's equation in Fourier space.
- ullet Domain decomposition: pick particles requiring higher resolution, divide them into T isolated groups.
- For each group:
 adjust PM potential ⇒ tidal field;
 integrate forward with tree code
 (using shorter time step if needed).
- Step PM particles

One big problem now T smaller problems, run in parallel

Load balancing:

- estimate work from sizes of trees; split evenly
- if node finishes early, request unfinished tree from others
- let two or more nodes share a tree

Issues for Large ($N=1024^3$) runs:

- \bullet IO: \sim 36Gb per checkpoint
- Dealing with large data set, e.g.:

Ray tracing for gravitational lensing or SZ

 $\implies \rho, < v >$ at given point.

Find gravitationally bound objects and their properties.

Same set of particles at different redshifts.

Visualizing.

- FFT library:
 - 1-D and 3-D serial
 - 3-D parallel?
- Single tree parallelism (need only up to ~ 8 CPU)
- Serial performance of tree
- http://astro.princeton.edu/~bode/expedition